Synthesis of nitrogen-doped graphene films for lithium battery application.
نویسندگان
چکیده
We demonstrate a controlled growth of nitrogen-doped graphene layers by liquid precursor based chemical vapor deposition (CVD) technique. Nitrogen-doped graphene was grown directly on Cu current collectors and studied for its reversible Li-ion intercalation properties. Reversible discharge capacity of N-doped graphene is almost double compared to pristine graphene due to the large number of surface defects induced due to N-doping. All the graphene films were characterized by Raman spectroscopy, transmission electron microscopy, and X-ray photoemission spectroscopy. Direct growth of active electrode material on current collector substrates makes this a feasible and efficient process for integration into current battery manufacture technology.
منابع مشابه
Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode
A new route has been developed to synthesize nitrogen-doped reduced graphene oxide (N-RGO) with excellent lithium storage properties. Nitrogen-doped graphene oxide (N-GO) is firstly synthesized and then reduced to N-RGO. The nitrogen content of N-GO can reach up to 5.6 wt%. After hydrothermal treatment, the nitrogen content of N-RGO still remains at 2.0 wt%. Our N-RGO material reveals excellent...
متن کاملNitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.
In this work, we present a synthesis approach for nitrogen-doped graphene-sheet-like nanostructures via the graphitization of a heteroatom polymer, in particular, polyaniline, under the catalysis of a cobalt species using multiwalled carbon nanotubes (MWNTs) as a supporting template. The graphene-rich composite catalysts (Co-N-MWNTs) exhibit substantially improved activity for oxygen reduction ...
متن کاملCan all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
The electronic and adsorption properties of graphene can be changed significantly through substitutional doping with nitrogen and nitrogen decoration of vacancies. Here ab initio density functional theory with a dispersion correction was used to investigate the stability, magnetic and adsorption properties of nine defects in graphene, including both nitrogen substitutional doping and nitrogen d...
متن کاملOne-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries
Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene synthesis an...
متن کاملLithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition approach
A plasma-assisted directed vapor deposition approach has been explored for the synthesis of lithium phosphorous oxynitride Lipon thin films. A Li3PO4 source was first evaporated using a high voltage electron beam and the resulting vapor entrained in a nitrogen-doped supersonic helium gas jet and deposited on a substrate at ambient temperature. This approach failed to incorporate significant con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 4 11 شماره
صفحات -
تاریخ انتشار 2010